5th generation mobile networks
写给《计算机通信基础》结课ppt。
目录
"What will be 5G?"
1~5G development
5G
特点
日前,国际电信联盟(ITU)发布了最新的5G标准草案,根据这份草案,单个5G基站至少必须具备20Gbps下行链路的处理能力,而据雷锋网了解,目前LTE基站只支持1Gbps的下行链路。此外,未来的5G标准还要求每平方公里必须支持100万台连接设备,运营商则必须至少有100MHz的空闲频谱,在可行的情况下还可以扩大到1Ghz。
工程需求
- 快
- 低能耗
数据速率
衡量指标细分:
聚合数据速率或区域容量
通信系统能够同时支持的总的数据速率,单位是单位面积上的bits/s。相比于上一代的4G通信系统,5G的局和数据速率要求提高1000倍以上。
边缘速率
指的是当用户处于系统边缘时,例如处于小区中离基站最远的位置,用户可能会遇到的传输速率最差的情况,也就是数据速率的下限。又因为一般取传输速率最差的5%的用户作为衡量边缘速率的标准,边缘速率又称为5%速率。对于该指标,5G的目标是100Mbps到1Gbps,这一指标比相比于4G典型的1Mbps的边缘速率,要求提高了至少100倍。
峰值速率
指的是所有条件最好的情况下,用户能够达到的最大速率。5G甚至有望达到10Gbps的量级。
该标准要求单个5G基站至少能够支持20Gbps的下行链路以及10Gbps的上行链路,这是单个基站可以处理的总流量。理论上,如果固定的无线宽带用户使用专用的点到点连接,那么他们可以获得接近5G的速度。实际上,基站覆盖范围内的用户将分配使用20Gbps以及10Gbps这一数据吞吐量。
5G实际传输速率
不管单个5G基站的峰值容量是多少,该草案要求每个用户的下载和上传速度必须达到100Mbps以及50Mbps。这些听起来和LTE-Advanced很接近,但是5G能够让你一直保持100Mbps的下载速度,而不是靠运气。
除此之外,该草案还要求增强5G的稳定性和可靠性,例如数据包必须在1ms内到达基站,并且切换5G基站的中断时间应该为0ms,也就是说切换过程是瞬时的,中间不允许有数据丢失。
延迟
现在4G系统的往返延迟是15ms,其中1ms用于基站给用户分配信道和接入方式产生的必要信令开销。虽然4G的15ms相对于绝大多数服务而言,已经是很够用了。 但随着科技发展,之后兴起的一些设备需要更低的延迟,比如移动云计算和可穿戴设备的联网。
在理想情况下,5G网络的延迟最大不能超过4ms,而LTE网络对延迟的要求则是20ms。不过,要想实现超稳定低延迟通信(URLLC),5G的延迟必须低于1ms。
能量花费
随着我们转向5G网络,通信所花费的能耗应该越来越低。但前文提到,用户的数据速率至少需要提高100倍,这就要求5G中传输每比特信息所花费的能耗需要降低至少100倍。而现在能量消耗的一大部分在于复杂的信令开销,例如网络边缘基站传回基站的回程信号。而5G网络,由于基站部署更加密集,这一开销会更多。因此,5G必须要提高能量的利用率。
5G规范要求在负载下保持高能效,并且在空闲的状态下能够迅速切换成低能耗模式。为了实现这一点,5G无线电必须在10ms内从全速模式切换到节能模式。
频谱效率
从草案的规定来看,5G的峰值频谱效率(每赫兹频谱传输的比特)与LTE-advanced非常接近,都是上行30bits/Hz、下行15bits/Hz,这相当于8x4 MIMO。
接入设备特点
5G网络需要有更强的服务能力,能够同时接入更多的用户。随着机机(machine-to-machine,意为设备到另一设备)通信技术的发展,单一宏蜂窝应该能够支持超过1000个低传输速率设备,同时还要能继续支持普通的高传输速率设备。
提升速率的关键技术
C=W log2(1+S/N)
基于OFDM优化的波形和多址接入
5G NR设计过程中最重要的一项决定,就是采用基于OFDM优化的波形和多址接入技术,因为OFDM 技术被当今的 4G LTE 和 Wi-Fi 系统广泛采用,因其可扩展至大带宽应用,而具有高频谱效率和较低的数据复杂性,因此能够很好地满足 5G 要求。 OFDM 技术家族可实现多种增强功能,例如通过加窗或滤波增强频率本地化、在不同用户与服务间提高多路传输效率,以及创建单载波 OFDM 波形,实现高能效上行链路传输。
OFDM有以下优势:
- 复杂度低(Low complexity):可以兼容低复杂度的信号接收器,比如移动设备
- 频谱效率高(High spectral efficiency:):可以高效使用 MIMO,提高数据传输效率。
- 能耗少(Low power consumption):可以通过单载波波形,实现高能效上行链路传输。
- 频率局域化(Frequencylocalization):可以通过加窗和滤波,提升频率局域化,最大限度减少信号干扰。
通过子载波间隔扩展实现可扩展的OFDM参数配置
目前,通过OFDM子载波之间的15 kHz间隔(固定的OFDM参数配置),LTE最高可支持20 MHz的载波带宽。为了支持更丰富的频谱类型/带(为了连接尽可能丰富的设备,5G将利用所有能利用的频谱,如毫米微波、非授权频段)和部署方式。5G NR将引入可扩展的OFDM间隔参数配置。这一点至关重要,因为当FFT(Fast Fourier Transform,快速傅里叶变换)为更大带宽扩展尺寸时,必须保证不会增加处理的复杂性。而为了支持多种部署模式的不同信道宽度,如上图所示,5G NR必须适应同一部署下不同的参数配置,在统一的框架下提高多路传输效率。另外,5G NR也能跨参数实现载波聚合,比如聚合毫米波和6GHz以下频段的载波,因而也就具有更强的连接性能。
通过OFDM加窗提高多路传输效率
前文提到,5G 将被应用于大规模物联网,这意味着会有数十亿设备在相互连接,5G势必要提高多路传输的效率,以应对大规模物联网的挑战。为了相邻频带不相互干扰,频带内和频带外信号辐射必须尽可能小。OFDM能实现波形后处理(post-processing),如时域加窗或频域滤波,来提升频率局域化。如下图,利用5G NR OFDM的参数配置,5G可以在相同的频道内进行多路传输。
面对这一需求,Qualcomm正积极推动CP-OFDM(循环前缀正交频分复用)加窗技术,大量的分析和试验结果表明,它能有效减少频带内和频带外的辐射,从而显著提高频率局域化。CP-OFDM技术的效果已被实践证实,现在正广泛应用于LTE网络体系中。
灵活的框架设计
显然,要实现5G的大范围服务,仅有基于OFDM优化的波形和多址接入技术是远远不够的。设计5G NR的同时,还在设计一种灵活的5G 网络架构,以进一步提高5G服务多路传输的效率。这种灵活性即体现在频域,更体现在时域上,5G NR的框架能充分满足5G的不同的服务和应用场景。
可扩展的时间间隔
相比当前的 4G LTE网络,5G NR将使时延降低一个数量级。目前LTE网络中,TTI(时间间隔)固定在1 ms(毫秒)。为此,3GPP在4G演进的过程中提出一个降低时延的项目。尽管技术细节还不得而知,但这一项目的规划目标就是要将一次傅里叶变换的时延降低为目前的1/8(即从1.14ms降低至143µs(微秒))。而为了支持“长时延需求”的服务,5G NR的灵活框架设计可以向上或向下扩展TTI(即使用更长或更短的TTI),依具体需求而变。
除此之外,5G NR同样支持同一频率下以不同的TTI进行多路传输。比如,高Qos(服务质量)要求的移动宽带服务可以选择使用500 µs的TTI,而不是像LTE时代只能用标准TTI,同时,另一个对时延很敏感的服务可以用上更短的TTI,比如140 µs,而不是非得等到下一个子帧到来,也就是500 µs以后。也就是说上一次传输结束以后,两者可以同时开始,从而节省了等待时间。
自包含集成子帧
自包含集成子帧是另一项关键技术,对降低时延、向前兼容和其他一系列5G特性意义重大。通过把数据的传输(transmission)和确认(acknowledgement)包含在一个子帧内,时延可显著降低。下图展示的是一个TDD下行链路子帧,从网络到设备的数据传输和从设备发回的确认信号都在同一个子帧内。而且通过5G NR独立集成子帧,每个TTI都以模块化处理完成,比如同意下载→数据下行→保护间隔→上行确认。
模块化同样支持不同类型的子帧为未来的各种新服务进行多路传输,配合5G NR框架支持空白子帧和空白频率资源的设计,使其拥有向前兼容性——未来的新型服务可以以同步或非同步状态部署在同一频率内。
先进的新型无线技术
我们在开头提到过,5G必然是在充分利用现有技术的基础之上,充分创新才能实现的,而4G LTE正是目前最先进的移动网络平台,5G在演进的同时,LTE本身也还在不断进化(比如最近实现的千兆级4G+),5G不可避免地要利用目前用在4G LTE上的先进技术,如载波聚合,MIMO技术,非共享频谱的利用,等等;可以说,5G在很大程度上是以4G为基础的。
大规模MIMO
MIMO(Multiple-Input Multiple-Output)技术是目前无线通信领域的一个重要创新研究项目,通过智能使用多根天线(设备端或基站端),发射或接受更多的信号空间流,能显著提高信道容量;而通过智能波束成型,将射频的能量集中在一个方向上,可以提高信号的覆盖范围。这两项优势足以使其成为5G NR的核心技术之一,因此一直在努力推进MIMO技术的演化,比如从2x2提高到了目前4x4 MIMO。但更多的天线也意为着占用更多的空间,要在空间有限的设备中容纳进更多天线显然不现实,所以,只能在基站端叠加更多MIMO。从目前的理论来看,5G NR可以在基站端使用最多256根天线,而通过天线的二维排布,可以实现3D波束成型,从而提高信道容量和覆盖。
毫米波
对无线通信稍有了解的人应该知道,频率越高,能传输的信息量也越大,也就是体验到的网速更快。正是因为这一优势,高通把目光聚焦在了频率极高的毫米波上(目前毫米波主要应用于射电天文学、遥感等领域)。全新 5G 技术正首次将频率大于 24 GHz 以上频段(通常称为毫米波)应用于移动宽带通信。大量可用的高频段频谱可提供极致数据传输速度和容量,这将重塑移动体验。但毫米波的利用并非易事,使用毫米波频段传输更容易造成路径受阻与损耗(信号衍射能力有限)。通常情况下,毫米波频段传输的信号甚至无法穿透墙体(回想一下你家的5GHz Wi-Fi有多容易被墙体屏蔽),此外,它还面临着波形和能量消耗等问题。
不过,已经在天线和信号处理技术方面取得了一些进展。通过利用基站和设备内的多根天线,配合智能波束成型和波束追踪算法,可以显著提升5G毫米波覆盖范围,排除干扰。同时, 5G NR 还将充分利用6GHz以下频段和 4G LTE ,让毫米波的连接性能更上一层。
在毫米波领域,Qualcomm一直走在前沿,实现了移动设备中的802.11ad。60 GHz芯片的商业化,除此之外,也在积极研发和测试28GHz频段(可扩展至其他频段)的毫米波原型。不久前,高通在一个人口密集的住宅区附近做了一次模拟实验,现场数据显示,视距内(line-of-sight)的覆盖可达350米,而非视距(Non-Line-of-Sight)的覆盖可达150米。另外,高通最近还发布了第一块5G毫米波调制解调器,骁龙X50,以支持2017下半年的5G毫米波早期实验部署。
频谱共享
使用共享频谱和非授权频谱,可将 5G 扩展到多个维度,实现更大容量、使用更多频谱、支持新的部署场景。这不仅将使拥有授权频谱的移动运营商受益,而且会为没有授权频谱的厂商创造机会,如有线运营商、企业和物联网垂直行业,使他们能够充分利用 5G NR 技术。5G NR 原生地支持所有频谱类型,并通过前向兼容灵活地利用全新的频谱共享模式。这为在 5G 中创新的使用频谱共享技术创造了机遇。在频谱共享技术领域,比如LTE-U,LAA, LWA, CBRS, LSA, 还有MulteFire,这些技术已经用在了LTE上,5G NR将在这基础上加以创新。
先进的信道编码设计
目前LTE网络的编码还不足以应对未来的数据传输需求,因此迫切需要一种更高效的信道编码设计,以提高数据传输速率,并利用更大的编码信息块契合移动宽带流量配置,同时,还要继续提高现有信道编码技术(如LTE Turbo)的性能极限。在这方面,Qualcomm促成了行业统一采用LDPC信道编码,LDPC编码已被证明,对于需要一个高效混合HARQ体系的无线衰落信道来说,它是理想的解决方案。从下图可以看出,LDPC的传输效率远超LTE Turbo,且易平行化的解码设计,能以低复杂度和低时延,扩展达到更高的传输速率。
进展
瓶颈
未来天线必须要和系统一起设计而不是单独设计,甚至可以说天线将会成为5G的一个瓶颈,如果不突破这一瓶颈,系统上的信号处理都无法实现,所以天线已经成为5G移动通信系统的关键技术。天线不只是一个辐射器,它有滤波特性、放大作用、抑制干扰信号,它不需要能量来实现增益,因此天线不仅仅是一个器件。
现状
5G并非凭空而来,它的实现有赖于对现有技术的深入研究利用,比如用在LTE Advanced和LTE Advanced Pro 上的载波聚合、LTE物联网、车联网等技术。未来两年,4G和5G将平行发展,一边是4G的继续成熟,一边是5G的创新研发。根据3GPP的规划,Release 15预计会在2018年6月发布,不过由于行业的推动,这个时间很可能会提早三五个月,保守估计,5GNR的大规模商业化部署最早将在2019年开始。
安全威胁
预计到2021年,5G将会为网络运营商和服务提供商提供大规模的效益以及应用。5G拥有更高的传输速率、更低的延迟,以及更高的能效,功能和技术都将会有进一步的提升,从目前来看,5G将连接更丰富的设备类型,满足这些需要应用云计算和虚拟化技术。
5G的细分市场
- 网络运营
- 大规模物联网
- 关键通信
- 增强移动带宽
- Vehicle to X(Vehicle to Everything)